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A s y s t e m  of equations descr ib ing  the t ransient ,  noniso thermal  flow of gas  in pipel ines  is 
considered,  and the effect  of the t e r m s  cha rac te r i z ing  the change in the veloci ty  head on the 
c h a r a c t e r  of the solution is analyzed.  A compar i son  is drawn between the numer ica l  solu-  
tion of these equations with and without allowing for  the changes in the veloci ty  head, and 
some corresponding e s t ima te s  of the d i f ferences  between these a re  p resen ted .  

According to [1] the different ial  equations represen t ing  the t ransient ,  noniso thermal  flow of gas in a 
hor izonta l  pipe may be expres sed  in the following manner  (assuming that the t e m p e r a t u r e  of the external  
medium is  a known function of the coordinate,  or  a constant  quantity, and that heat t r an s f e r  obeys Newton's 
law, while the t r a n s f e r  of heat along the axis of the pipe by conduction in the gas  may be neglected): 

0p ~ 0 (pw) =0, 
Ot Ox (1) 

o (pw) + a (p + pw~)=_ p 
at Ox ~ ~[~[' (2) 

0t p + + ~ - x  pw + - - - +  -- (3) p D A 

In o rde r  to complete  the s y s t e m  of equations (1)-(3) we add the equation of s tate  of the gas  in the fo rm 

P 
-- z o ( P,  T) RT,  

7 (4) 
O < x < L ,  t > O .  

It was pointed out by I. A. Charnyi  [2] that, in the case  of t rans ient  gas  flows in Iong tubes (gas p ipe-  
lines) taking place at veloci t ies  cons iderably  below the veloci ty  of sound, the changes in veloci ty  head i .e. ,  
the t e r m s  w(~w/ax) and Ow/0t, which only exer t  a ve ry  smal l  influence under these c i r cums tances ,  might be 
neglected in the equation of motion.  However,  our own study of the l i t e ra tu re  has not revea led  any accura te  
e s t ima te s  to just ify this in the case  of the t ransient ,  noniso thermal  gas  flows descr ibed  by Eqs.  (1)-(4). 

We shall  now compare  some numer ica l  solutions of  Eqs.  (1)-(4), c a r r i e d  out with and without allowing 
for changes in the veloci ty  head, in re la t ion  to the flow of gas  when the end of a pipeline is instantaneously 
covered .  This  const i tutes  a l imiting case,  providing a fa i r  es t imate  of the m a x i m u m  poss ib le  deviat ions.  

It was shown in [3, 4] that, by neglecting the t e r m s  w(~c/0x) and aw/Ot, Eqs .  (1)-(4) could be reduced 
to the following s y s t e m  of quasi l inear  different ial  equations of the evolution type; 
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Fig. 1. Change in p r e s s u r e  (a), t e m p e r a t u r e  (b), and m a s s  flow 
of gas  (e) along the gas  pipeline with t ime: 1 ) f=  0; 2) 1; 3) 5; 4) 15; 
5) 30 rain; eu rves  1-5, without allowing for  the iner t ia l  t e r m s ;  
points,  allowing for  the iner t ia l  t e r m s .  P, kg / em2 ;  T, ~ tV[/f, 
k g - s e c / m a ;  L, kin. 

where  

Ot -- -~a 2bG Ox~-7- + G -~x (z~ - -  z~ + T \ OT }p 

o~- - P " ~ 206 Ox~-  + ~ -oTx (~or) 

m +  - -  + bc - - -  n* (T o - T )  �9 
\ OT )~ i a Ox p~ \ OT ip " -~o op 

Op2 
- -  2bG2zoT , 

Ox 

O <  x.< L, t > O ,  

(5) 

- < 0 ,  

(7) 

h ~  - -  z o + T  , Zo=Z o(p, T), 
z o \ O P / r  Zo \ O T ] p  

b= 2)RDp, XARa AR n* K a D R  
a = , c -  2gDf,~cp, m = - - , c p  - - - - c /  

For  the numer i ca l  solution of Eqs.  (5)-(7) by the method of finite d i f ferences ,  f in i te -d i f fe rence  schemes  
of the explicit  type were  proposed  in [4, 5]. 

The use  of f in i te -d i f fe rence  schemes  involving a s y m m e t r i c  d i f ference  equations was cons idered  in [6], 
as  well as modif icat ions of these based on the a l ternat ing method and the method of the a r i thmet ic  mean.  

In the case  of the t rans ient ,  non iso thermal  flow of gas a r i s ing  f r o m  the instantaneous closing of the 
end of the pipeline cons idered  below, the boundary conditions take the fo rm 

M (L, t)=pw(L, t)=0. (8) P(O, t)=[~(t), T(0, /)=/~(/), - ~  
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As the initial dis t r ibut ion of the unknown quantities, we take the flow p a r a m e t e r s  obtained for  a steady, 
noniso thermal  flow.* 

For  the numer ica l  solution of the s y s t em of equations (5)-(6), with the initial and boundary conditions 
indicated (8), in con t ras t  to the schemes  of the f i r s t  o rder  of accuracy  which were  p resen ted  in [4, 5], we 
employed an explicit  f in i te -d i f ference  scheme of the second o rder  of accuracy  with r e spec t  to the s tep h. 
The der iva t ives  with r e spec t  to x at the internal  points were  approximated  by means  of the s y m m e t r i c a l  
d i f ference  re la t ionships  

( a P, i + p2 g - - I , k  , i ~ - l , k  

OT = Tt+l,k--T~-~,k +O(h2), -~x ~.k 
-~x ~,~ 2h = 2h ' + O (h 2) 

(i=1, 2 . . . . .  n-- l ;  k = l ,  2 . . . .  ; n=l /h) .  

For  an approximat ion of the der iva t ives  at the boundary points we used the cor responding  uni la tera l  
th ree-po in t  d i f ference  fo rmulas .  

In o rde r  to calculate  the values  of G we used the following f in i te-di f ference  fo rmulas :  

[ 1 p~+,.~ _ p2i_,,k ] ' / "  
Gi.~ = - -  sign (Pi+1,k - -  Pi-l.t~) 2b (ZoT)i & 2h (9) 

(i=1, 2 . . . . .  n - - l ;  k = l ,  2, 3 . . . .  ), 

[ 1 I 4p~k-3p2~ 1 '/2 (10) Go,k= - -  sign (4Pl,k - -  3Po,k - -  P2,k ) 2b (zoT)o,k ' 2h 

In the p resen t  case  governed by the boundary conditions (8), in o rde r  to de te rmine  the t e m p e r a t u r e  
values  T at the points of the r ight-hand boundary (x = L) we used f in i te -d i f ference  fo rmulas  of the k indgiven 
in [5]. 

By way of example ,  F igure  1 shows the distr ibution of P, T, and M / f  r e spec t ive ly  along the pipe 
for  an ideal gas at var ious  instants  of t ime,  obtained by computer  calculat ion (the continuous l ines co r -  
respond to the dis tr ibut ion without allowing for  the veloci ty  head and the points to the inclusion of the la t ter) .  

The dis t r ibut ion in question co r responds  to the boundary conditions 

M (L, t)=0 (11) P(0, t)----- 55.104 kg/m2; T(0, t)=7~ T 

and to an initial dis t r ibut ion of flow p a r a m e t e r s  obtained for steady,  i so the rma l  conditions with 

M (0, 0)=25 kg.sec/m a. (12) P(0, 0)=55.10 ~ k g ; m  2 T(0, 0 )=7~ ~ -  

The values of the p a r a m e t e r s  enter ing into Eqs.  (1)-(4) and (5)-(7) were  taken as follows: L = 100 kin; 
D = 0.7 m;  R = 53 k g . m / k g . ~  cp  = 0.55 k c a l / k g . d e g ;  ~, = 0.01386; K = 1 k c a l / h . m  2.~ T o = 280~ 

It follows f rom the r e su l t s  obtained in Fig. 1 that the d i f ference  between the two solutions is no 
g r e a t e r  than 1% as r ega rd s  t e m p e r a t u r e  and p r e s s u r e .  S 

The di f ference  in flow r a t e s  (Fig. lc) at the initial instant  of t ime equals 20% (at points close to the 
closed end), which is quite natural ,  since the iner t ia l  t e r m s  were  neglected.  

In prac t ice ,  the solutions of Eqs.  (1)-(4) with and without consider ing the change in the veloci ty  head 
agree  to an accuracy  of 4-5% for  a t of the o rder  of 30 min.  This  approx imate ly  co r re sponds  to six t imes  
the running t ime of a gas p r e s s u r e  wave at the veloci ty  of sound, in ag reemen t  with the es t imate  of I. A. 
Charnyi  [2]. 

*The de te rmina t ion  of the p a r a m e t e r s  of this kind of flow involves the solution of a Cauchy p rob lem for ,the 
cor responding  s y s t e m  of nonlinear  ord inary  different ia l  equations, subject to specif ied conditions regarding  
the p r e s s u r e  and t e m p e r a t u r e  at one end of the pipe [4, 5]. 
Sin the example  considered,  the numer i ca l  solution of Eqs.  (5)-(7) obtained by  the authors  was compared  
with the numer i ca l  solution of Eqs.  (1)-(4) obtained by the method of finite d i f fe rences  [7] for  the foregoing 
initial and boundary conditions by O. F. Vas iPev  and A. F. Voevodin. 
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T A B L E  1. C o m p a r i s o n  be tw een  the D i s t r i b u t i o n  of the P a r a m e t e r s  

of a T r a n s i e n t  Gas  F low along a Gas  P i p e l i n e  fo r  R e a l  and Idea l  G a s e s  

in the N o n i s o t h e r m a l  Mode 
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34,699 
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53,319 
51,657 
50,060 
48,594 
47,334 
46,354 
45,690 
45,325 
45,187 
45,168 

55,0 
53,554 
52,158 
50,867 
49,740 
48,825 
48~t49 
47,7tl 
47,477 
47,389 
47,378 

55,0 
53,837 
52,732 
51.733 
50,884 
50,211 
49,725 
49,415 
49,25I 
49,190 
49,182 

55,0 
54,346 
53,740 
53,208 
52,766 
52,425 
52,183 
52,030 
51,949 
51,919 
51,915 

55.0 
53.I09 
5t,174 
49,188 
47,141 
45.022 
42,817 
40,511 
38,083 
35,507 
32,744 

55,0 
53,185 
51,369 
49,599 
47,941 
46,486 
45,329 
44,531 
44,088 
43,919 
43,896 

55,0 
53,394 
51,824 
50,352 
49,047 
47,972 
47,167 
46,64I 
46,357 
46,251 
46,237 

55,0 
53,668 
52,388 
51,218 
50,211 
49,405 
48,819 
48,443 
48,243. 
48,169 
48,159 

55,0 
54,203 
53,455 
52,790 
52,233 
51,799 
51,490 
51,295 
51,192 
51,154 
51,148 

47,0 
41,971 
37,469 
33,434 
29,8II 
26,55I 
23,61! 
20,950 
18,530 
16,317 
14,277 

47,0 
42,109 
37,836 
34,190 
31,240 
29,093 
27,871 
27,671 
28,554 
30,573 
33,941 

47,0 
42,367 
38,492 
35,300 
32,851 
31,210 
30,430 
30,551 
31,608 
33,689 
37,084 

47,0 
42,567 
39,125 
36,356 
34,300 
32,993 
32,464 
32,740 
33,867 
35,958 
39,352 

47,0 
42,515 
39,807 
37,709 
36,219 
35,349 
35,116 
35,552 
36,725 
38,787 
42,129 

47,0 
42,559 
38,612 
35,102 
31,982 
29,209 
26,743 
24,552 
22,603 
20,871 
19,331 

47,0 
42,642 
38,84I 
35,599 
32,974 
3t,069 
30,021 
29,971 
31,042 
33,403 
37,542 

47,0 
42,815 
39,308 
36,417 
34,200 
32,730 
32,082 
32,329 
33,566 
35,99l 
40,I84 

47,0 
42,942 
39,778 
37,228 
35,335 
34,147 
33,714 
34,095 
35,389 
37,820 
42,028 

47,0 
42,791 
40,244 
38,260 
36,845 
36,024 
35,833 
36,335 
37,651 
40,040 
44,208 

25,0 
25,0 
25,0 
25,0 
25,0 
25,0 
25,0 
25,0 
25.0 
25,0 
25,0 

24,348 
24,184 
23,706 
22,799 
21,320 
t9,141 
16,214 
12,623 
8,571 
4,299 

0 

22,655 
22,366 
21,625 
20,379 
18,595 
16,278 
13,488 
10,337 
6,959 
3,482 

0 

20,381 
20,035 
19,219 
17,931 
16,185 
I4,026 
11,529 
",8,789 
5,902 
2,952 
" 0 

15,370 
15,010 
14,251 
13,I6i 
1t,770 
10,123 
8,278 
6,293 
4,224 
2,115 

0 

M 

25,0 
25,0 
25,0 
25,0 
25,0 
25,0 
25.0 
25,0 
25.0 
25,0 
25,0 

24,547 
24,415 
24,013 
23,222 
21,873 
19,799 
16,901 
13,236 
9,020 
4,530 

0 

23,161 
22,906 
22,218 
21,030 
19,285 

16,966 
14,118 
10,852 
7,318 
3,663 

0 

21,147 
20,830 
20,038 
18,753 
16,980 
I4,755 
12,I55 
9,280 
6,236 
3,119 

0 

16,442 
16,111 
15,355 
14,224 
12,752 
10.987 
8,994 
6,841 
4,592 
2,299 

0 

Note: I) real gas; II) ideal gas; the quantities given in the table have the following 
dimensions: t) rain; x) km; P) kg/cm2; T) ~ M/f) kg,sec/m 3. 

It  i s  i n t e r e s t i n g  to note that, at the onse t  of the p r o c e s s  (t -< 1 min),  the so lu t ion  obta ined  without  
a l lowing  for  the change  in the v e l o c i t y  head  g i v e s  too high a r e s u l t ,  whi le  fo r  long p e r i o d s  the r e s u l t  i s  too 
low. 

Tab l e  1 r e p r e s e n t s  a c o m p a r i s o n  be tween  the so lu t ions  of Eqs .  (5)-(7) with the s a m e  v a l u e s  of the 
in i t i a l  p a r a m e t e r s  fo r  a r e a l  and an idea l  gas ,  obta ined  by c o m p u t e r  c a l c u l a t i o n  sub jec t  to the boundary  
cond i t ions  
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M (L, t )=0.  (13) P(O, t)=55.10'kg/m2: T(O, t)=47~ ~--  

The initial distribution of flow pa ramete r s  was obtained for a s teady-s ta te  nonisothermal flow by the 
Runge-Kut ta  method with 

~ y  M P(0, 0)=55.104 k---~ T(0, 0)=47~ (0, 0)=25 kg.sec/m 3, (14) V- 
m 2 

In calculating the flow pa rame te r s  of a real  gas, we used the equation of state of a real  gas in the 
t3erthelot form.  

We see from Table 1 that the p ressu re  at the end of the tube is higher for the real  than for the ideal 
gas,  by about 6% at t = 0, while the tempera ture  of the rea l  gas is lower than that of the ideal (by 5.2~ or  
1.7% at t = 0): With increasing time the difference between the tempera tures  of the real  and ideal gases  
diminishes.  

The mass  flow of the real  gas is about 4-5% lower than that of the ideal for t > 0. 

Thus our numerical  calculations have shown that, in pract ice,  for periods of g rea te r  than 30 rain, 
the effect of the t e rms  character iz ing the change in the velocity head on the distribution of the pa ramete r s  
of a transient,  nonisothermal gas flow (as encountered in the cases  of gas motion discussed here) is negli-  
gible; these t e rms  may indeed be omitted without detr iment  to pract ical  accuracy  when calculating the d is -  
tribution of temperature ,  p ressure ,  and mass  flow for gas in a pipeline. 

P, p, W 

Y 
U 
A 

T, T O 
G 
M 
f, D 
X 

t 
h 

NOTATION 

are the p ressure ,  density, and velocity of the gas averaged over the c ross  section of the 
pipe, respect ively;  
is the specific gravity of the gas;  
is the internal energy;  
is the heat equivalent of mechanical  work; 
is the hydraulic res i s tance ;  
are  the tempera ture  of the gas and the external medium respect ively;  
is the grav imet r ic  flow of gas;  
is the mass  flow of gas;  
are  the c ross - sec t iona l  area  and diameter  of the pipe, respect ively;  
is the coordinate along the axis of the pipe; 
is the t ime; 
is the step in the coordinate x. 

I. 

2. 
3. 

4. 

5. 

6. 
7. 
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